

 Navigation

 	
 index

 	
 next |

 	WS 0.1 documentation

Welcome to WS’s documentation!

Note

Documentation still in active development!

A Business Process Manager for Django. Uses Celery for task automation and
ExtJS for web interface.

	Overview

	Installation
	Dependencies

	Configuration

	Quick Start

	Administration
	User permissions

	Creating a workflow

	Custom celery tasks

	Development, Help & Suggestions
	Reporting bugs and suggestions

	Asking for help

	Getting source code

	Testing

	Glossary

	API documentation
	ws

	ws.celery

	ws.forms

	ws.models

	ws.tasks

	ws.views

	TODO
	Optional

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2012, GISA Elkartea.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	WS 0.1 documentation

Overview

WS is a Business Process Manager for Django. Uses Celery for asynchronous
task automation and ExtJS for web interface.

WS executes processes following previously defined
workflows, creating a tasks for each
node, gided by the transitions between nodes.

The user responsible for the task is automatically chosen from the
role defined in the node.

 Copyright 2012, GISA Elkartea.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	WS 0.1 documentation

Installation

Todo

pip install django-ws

WS and all needed dependencies should be installed automatically with:

pip install hg+https://lagunak.gisa-elkartea.org/hg/django-ws

Dependencies

	django_extjs4 [http://pypi.python.org/pypi/django_extjs4]

	django-celery [http://pypi.python.org/pypi/django-celery]

	django-guardian [http://pypi.python.org/pypi/django-celery/]

	django-jsonfield [http://pypi.python.org/pypi/django-jsonfield]

	pexpect [http://pypi.python.org/pypi/pexpect]

Also, this project uses South [http://pypi.python.org/pypi/South] to ease upgrading.

Celery needs an AMQP broker, for example rabbitmq [http://www.rabbitmq.com/]

Configuration

Add this to INSTALLED_APPS in project’s settings.py:

	‘ws’

	‘guardian’

	‘djcelery’

	‘extjs4’

Add also the following line to your project’s settings.py:

import ws
ws.setup_loader()

Celery configuration

Celery has many configuration options, take a look at celery documentation [http://docs.celeryproject.org/en/latest/index.html].

The simplest configuration requires to set the AMQP broker url. For
example:

BROKER_URL = 'amqp://guest:guest@localhost:5672/'

Django-guardian configuration

Set anonymous user’s id:

ANONYMOUS_USER_ID = -1

ExtJS administration interface

Include ws.urls somewhere in your urls:

(r'^ws/', include('ws.urls'))

Collect the static files from extjs4 and ws:

./manage.py collectstatic

 Copyright 2012, GISA Elkartea.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	WS 0.1 documentation

Quick Start

 Copyright 2012, GISA Elkartea.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	WS 0.1 documentation

Administration

	User permissions

	Creating a workflow
	Using django admin interface

	Using fixtures

	Using python

	Custom celery tasks

 Copyright 2012, GISA Elkartea.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	WS 0.1 documentation

 	Administration

User permissions

 Copyright 2012, GISA Elkartea.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	WS 0.1 documentation

 	Administration

Creating a workflow

In this section we’ll see how to create new workflows through an example,
“Organizing a conference”:

First the call for papers is sent, and begins the search for a location.
When there are sufficient talks and the location is chosen begins the
propaganda. Then subscriptions are accounted until the starting day comes,
when the conference finally begins.

The graph could be something like this:

[image: digraph conference { "Send the Call for Papers" -> "Collect papers" "Collect papers" -> "Publicize" "Search a location" -> "Publicize" "Publicize" -> "Mailing" "Publicize" -> "Newspapers" "Publicize" -> "Poster" "Mailing" -> "Receive subscriptions" "Newspapers" -> "Receive subscriptions" "Poster" -> "Receive subscriptions" "Receive subscriptions" -> "Wait until the starting day" "Wait until the starting day" -> "Receive subscriptions" "Wait until the starting day" -> "Start the conference" };]

Using django admin interface

We’ll see how to create the “Organizing a conference” workflow using
Django’s admin interface:

[image: ../_images/ws-admin.png]

Create the workflow

The new workflow’s only required attribute is name: “Organizing conference”

	Node

	
	name: “Send the Call for Papers”

	is start: True

	split: AND

	role: Organization

	celery task: conferencer.tasks.mailing

	Node

	
	name: “Collect papers”

	join: AND

	split: AND

	role: Accounting

	celery task: conferencer.tasks.ask_human

	Node

	
	name: “Publicize”

	join: AND

	split: AND

	role: Accounting

	celery task: conferencer.tasks.ask_human

Using fixtures

Using python

Create the workflow:

from ws.models import Workflow, Node, Transition, Process
from ws.tasks.dummy import dummy

Create a workflow and save it
workflow = Workflow.objects.create()

Create three nodes for the workflow tied to dummy tasks and save them
first = Node.objects.create(name='first', workflow=workflow, celery_task=dummy, is_start=True)
second = Node.objects.create(name='second', workflow=workflow, celery_task=dummy)
third = Node.objects.create(name='third', workflow=workflow, celery_task=dummy, is_end=True)

Create two transitions to bind the nodes
Transition.objects.create(parent=first, child=second)
Transition.objects.create(parent=second, child=third)

Execute the workflow:

process = Process.objects.create(workflow=workflow)
process.start()

 Copyright 2012, GISA Elkartea.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	WS 0.1 documentation

 	Administration

Custom celery tasks

WS task’s are celery tasks inheriting BPMTask. They must be in a
module loaded by celery, the typical place it’s a tasks.py file in
the django application’s root. It’s strongly recommended to define also a
form describing the task’s parameters, but not strictly necessary:

from ws.tasks import BPMTask
from ws import forms

class MultiplyTaskForm(forms.BPMTaskForm):
 a = forms.IntegerField(label='first number')
 b = forms.IntegerField(label='second number')

class MultiplyTask(BPMTask):
 form = MultiplyTaskForm

 def call(self, a, b):
 return a * b

Note that ws.forms module is used instead django.forms. ws.forms are
basically ExtJS enabled django.forms.

It’s also possible to define certain actions that will take place when certain events happen:

class MultiplyTask(BPMTask):

 def call(self, a, b):
 return a * b

 def on_start(self, task_id, args, kwargs):
 print('Task ID: {}'.format(task_id))
 print('Received args: {}'.format(args))
 print('Received kwargs: {}'.format(kwargs))

 def on_success(self, retval, task_id, args, kwargs):
 print('Return value: {}'.format(retval))

 def on_failure(self, exc, task_id, args, kwargs, einfo):
 print('Exception: {}'.format(exc))

 def on_retry(self, exc, task_id, args, kwargs, einfo):
 print('Retrying...')

 def on_revoke(self, task_id, args, kwargs):
 print('Revoked :-/')

 Copyright 2012, GISA Elkartea.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	WS 0.1 documentation

Development, Help & Suggestions

WS is hosted in a redmine [http://www.redmine.org] project on
http://lagunak.gisa-elkartea.org/projects/django-ws

Reporting bugs and suggestions

Use the issue tracker [http://lagunak.gisa-elkartea.org/projects/django-ws/issues].

Asking for help

There is a forum [http://lagunak.gisa-elkartea.org/projects/django-ws/boards]
ready for questions. Preferred language is english, but basque or spanish
questions are also welcomed.

Getting source code

The code is in a mercurial [http://mercurial.selenic.com/] repository:

hg clone https://lagunak.gisa-elkartea.org/hg/django-ws

Testing

The code is developed and tested in Django 1.4 and RabbitMQ 2.8.

Many tests require a working celery environment. You could run celeryd and
the AMQP broker or set the celery’s test runner:

TEST_RUNNER = 'djcelery.contrib.test_runner.CeleryTestSuiteRunner'

 Copyright 2012, GISA Elkartea.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	WS 0.1 documentation

Glossary

	Workflow

	A collection of nodes, tied by transitions. A worfklow must have at
least one starting node.

	Node

	A concrete step of the workflow, defines WHO must do WHAT.

Each node executes a celery task. It can define all required parameters
or leave some empty. If at the time of execution some parameters are
still missing human intervention is requested.

Each node has a role assigned. When human intervention is requested the
target user is chosen from this group.

	Role

	A Group of users with a defined role in the process. The users of this
group will be responsible of the task; at this moment this only means
that thew will set the missed parameters from the node’s celery task.

To control when the node must be fired a join condition is defined:

	if a node has AND as the condition for joining, all the transitions
that point to this node must be fulfilled.

	if a node has XOR as the condition for joining, only one of the
transitions that point to this node must be fulfilled. When it does,
all other parent nodes are stopped.

To control what to do when a node is finished, a split condition is
defined:

	if a node has AND as the condition for splitting, when this node is
successful, all the children transitions that match the result will
be notified.

	if a node has XOR as the condition for splitting, when this node is
successful, only one of the children transitions that match the
result will be notified.

Any node can be set as starting point of the workflow. If there are
more than one starting nodes all are fired in parallel.

Any node can be a ending point of the workflow. After any of the ending
nodes is executed the workflow is terminated.

Todo

OR conditions

	Celery task

	Each node executes some automation: send a file somewhere, notify
someone when a task is finished, etc. This automations are implemented
with Celery.

	Transition

	Binding that tie together two nodes in a workflow. They also have
an optional condition witch must be fulfilled for the transition to
be valid.

	Process

	Execution of a workflow. Besides having a starting and an ending
date, also keeps track of the process status.

	Task

	Execution of a node in a given process. Besides having a starting
and an ending date, also keeps track of the undergoing celery task
status, progress and result.

When a task is started tries to get all parametters for the celery
task. This parameters can be defined in workflow, process, node,
task models and will automatically inherit from one another, being
the last ones the parameters define in tasks. In this way, you can
define workflow wide execution parameters and override them for a
given task.

If there is some missing parametter the task goes into PENDING state. A
user from the node’s role must fill the gaps.

	Role

	A pool of users electible for performing some task. Only the users
of the specified role can do the task.

 Copyright 2012, GISA Elkartea.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	WS 0.1 documentation

API documentation

	ws

	ws.celery
	ws.celery.bpm

	ws.celery.signals

	ws.celery.shortcuts

	ws.forms

	ws.models

	ws.tasks

	ws.views

 Copyright 2012, GISA Elkartea.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	WS 0.1 documentation

 	API documentation

ws

 Copyright 2012, GISA Elkartea.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	WS 0.1 documentation

 	API documentation

ws.celery

ws.celery.bpm

ws.celery.signals

ws.celery.shortcuts

 Copyright 2012, GISA Elkartea.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	WS 0.1 documentation

 	API documentation

ws.forms

 Copyright 2012, GISA Elkartea.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	WS 0.1 documentation

 	API documentation

ws.models

 Copyright 2012, GISA Elkartea.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	WS 0.1 documentation

 	API documentation

ws.tasks

 Copyright 2012, GISA Elkartea.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	WS 0.1 documentation

 	API documentation

ws.views

 Copyright 2012, GISA Elkartea.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 previous |

 	WS 0.1 documentation

TODO

Todo

OR conditions

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/django-ws/checkouts/latest/docs/glossary.rst, line 50.)

Todo

pip install django-ws

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/django-ws/checkouts/latest/docs/installation.rst, line 5.)

	docstrings

	tests

	documentation

	pypi

	setup.py

Optional

	announcement on reddit and freashmeat

 Copyright 2012, GISA Elkartea.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	WS 0.1 documentation

Index

 C
 | N
 | P
 | R
 | T
 | W

C

 	

 	Celery task

N

 	

 	Node

P

 	

 	Process

R

 	

 	Role, [1]

T

 	

 	Task

 	

 	Transition

W

 	

 	Workflow

 Copyright 2012, GISA Elkartea.
 Created using Sphinx 1.3.1.

 _static/plus.png

_static/comment-bright.png

_static/up-pressed.png

_static/down-pressed.png

_static/logo.png

_static/file.png

_static/down.png

_static/ajax-loader.gif

_images/graphviz-813ac457814a6456f601f107a0d9d58e426a934c.png
Send the Call for Papers

Publicize

Receive subscriptions
‘Wait until the starting day
Start the conference

search.html

 Navigation

 		
 index

 		WS 0.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2012, GISA Elkartea.
 Created using Sphinx 1.3.1.

_images/ws-admin.png
Nodes
Processs
Tasks
Transitions
Workflows

#add
#add
#add
#add
#add

#Change
#Change
#Change
#Change
#Change

_static/comment-close.png

_static/minus.png

_static/comment.png

_static/up.png

